Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B.

نویسندگان

  • Richard H Sohn
  • Clayton B Deming
  • David C Johns
  • Hunter C Champion
  • Ce Bian
  • Kevin Gardner
  • Jeffrey J Rade
چکیده

Inflammation and thrombosis are increasingly recognized as interrelated biologic processes. Endothelial cell expression of thrombomodulin (TM), a key component of the anticoagulant protein C pathway, is potently inhibited by inflammatory cytokines. Because the mechanism underlying this effect is largely unknown, we investigated a potential role for the inflammatory transcription factor nuclear factor-kappa B (NF-kappaB). Blocking NF-kappaB activation effectively prevented cytokine-induced down-regulation of TM, both in vitro and in a mouse model of tumor necrosis factor-alpha (TNF-alpha)-mediated lung injury. Although the TM promoter lacks a classic NF-kappaB consensus site, it does contain tandem Ets transcription factor binding sites previously shown to be important for both constitutive TM gene expression and cytokine-induced repression. Using electrophoretic mobility shift assay and chromatin immunoprecipitation, we found that multiple Ets species bind to the TNF-alpha response element within the TM promoter. Although cytokine exposure did not alter Ets factor binding, it did reduce binding of p300, a coactivator required by Ets for full transcriptional activity. Overexpression of p300 also prevented TM repression by cytokines. We conclude that NF-kappaB is a critical mediator of TM repression by cytokines. Further evidence suggests a mechanism involving competition by NF-kappaB for limited pools of the transcriptional coactivator p300 necessary for TM gene expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B

Inflammation and thrombosis are increasingly recognized as interrelated biologic processes. Endothelial cell expression of thrombomodulin (TM), a key component of the anticoagulant protein C pathway, is potently inhibited by inflammatory cytokines. Because the mechanism underlying this effect is largely unknown, we investigated a potential role for the inflammatory transcription factor nuclear ...

متن کامل

Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...

متن کامل

Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells

Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...

متن کامل

S100A9 aggravates bleomycin-induced dermal fibrosis in mice via activation of ERK1/2 MAPK and NF-κB pathways

Objective(s): This study aims to investigate the pathogenicity and possible mechanisms of S100A9 function in mice models of scleroderma. Materials and Methods: The content of S100A9 in the skin tissues of mice with scleroderma was determined. Different concentrations of bleomycin (BLM) and S100A9 were subcutaneously injected into the backs of mice simultaneously, and then pathological changes i...

متن کامل

Hyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells

Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 105 10  شماره 

صفحات  -

تاریخ انتشار 2005